Машина времени как сделать
Буквально на днях, после прочтения статьи Путешествия во времени и программирование я загорелся идеей об экспериментальных исследованиях, которые позволили бы получить практические ответы на вопросы о перемещении во времени. Но прежде чем переходить к экспериментам, требуется разработать теоретическое обоснование о возможности преодоления времени между прошлым и будущим. Чем собственно я занимался в течении последних дней. Исследование основано на теории относительности Эйнштейна и релятивистских эффектах, попутно затрагивая также квантовую механику и теорию суперструн. Думаю мне удалось получить положительные ответы на поставленные вопросы, подробно рассмотреть скрытые измерения и попутно получить объяснение некоторых явлений, например, природу корпускулярно-волнового дуализма. А также рассмотреть практические способы передачи информации между настоящим и будущем. Если вас тоже волнуют эти вопросы то добро пожаловать под кат.
Обычно я не занимаюсь теоретической физикой, и в реальности веду довольно однообразную жизнь занимаясь софтом, железом, и отвечая на однотипные вопросы пользователей. Поэтому если найдутся неточности и ошибки надеюсь на конструктивное обсуждение в комментариях. Но мимо данной темы я не смог пройти. В голове то и дело появлялись новые идеи, которые со временем образовались в единую теорию. Я как то не рвусь самому отправляться в прошлое или будущее в котором меня никто не ожидает. Но предполагаю, что в будущем это станет возможно. Меня больше интересуют решение прикладных задач связанных с созданием информационных каналов для передачи информации между прошлым и будущем. А также волнуют вопросы о возможности изменения прошлого и будущего.
Путешествие в прошлое связано с большим количеством трудностей, которые сильно ограничивают возможность такого путешествия. На данном этапе развития науки и техники, думаю преждевременно браться за реализацию таких идей. Но прежде чем понять, можем ли мы изменить прошлое, необходимо определиться с тем, можем ли изменить настоящее и будущее. Ведь суть любых изменений прошлого сводится к изменению последующих событий относительно заданной точки времени, к которому мы хотим вернуться. Если в качестве заданной точки взять текущий момент времени, то необходимость перемещения в прошлое отпадает, также как отпадает большое количество трудностей связанных с таким перемещением. Остается только узнать цепь событий, которые должны произойти в будущем, и попытаться разорвать эту цепь, чтобы получить альтернативное развитие будущего. На самом деле, нам даже не нужно знать полную цепочку событий. Необходимо достоверно узнать сбудется или нет одно конкретное событие в будущем (которое будет объектом исследования). Если сбудется, то значит, цепь событий привело к тому, чтобы это событие сбылось. Тогда у нас появляется возможность повлиять на ход эксперимента и сделать так, чтобы это событие не сбылось. Получится ли нам это сделать вопрос пока не ясный. И дело не в том, сможем ли мы это сделать (экспериментальная установка должна позволить это сделать), а в том, возможно ли альтернативное развитие реальности.
В первую очередь возникает вопрос — как можно достоверно узнать то, что еще не случилось? Ведь все наши знания о будущем всегда сводятся только к прогнозам, а для подобных экспериментов прогнозы не годятся. Полученные в ходе эксперимента данные должны неопровержимо доказывать то, что должно произойти в будущем, как о уже произошедшем событии. Но на самом деле есть способ получения таких достоверных данных. Если как следует рассмотреть теорию относительности Эйнштейна и квантовую механику, то можно найти такую частицу, которая сможет связать прошлое и будущее в одну линию времени и передать нам необходимую информацию. В качестве такой частицы выступает фотон.
Суть эксперимента сводится к знаменитому опыту с двумя щелями с отложенным выбором, который был предложен в 1980 г. физиком Джоном Уилером. Есть много вариантов реализации такого эксперимента, одно из которых приводилось на Хабре. В качестве примера рассмотрим эксперимент с отложенным выбором, который был предложен Скалли и Дрюлем:

На пути источника фотонов — лазера — ставят светоделитель, в качестве которого выступает полупрозрачное зеркало. Обычно такое зеркало отражает половину падающего на него света, а другая половина проходит насквозь. Но фотоны, будучи в состоянии квантовой неопределенности, попадая на светоделитель будут выбирать оба направления одновременно.
После прохождения светоделителя фотоны попадают в даун-конверторы. Даун-конвертор — это прибор, который получает один фотон на входе и производит два фотона на выходе, каждый с половиной энергии («даун-преобразование») от исходного. Один из двух фотонов (так называемый сигнальный фотон) направляется вдоль исходного пути. Другой фотон, произведённый даун-конвертором (именуемый холостым фотоном), посылается в совершенно другом направлении.
Используя полностью отражающие зеркала, расположенные по бокам, два луча снова собираются вместе и направляются к детекторному экрану. Рассматривая свет в виде волны, как в описании Максвелла, на экране можно видеть интерференционную картину.
В эксперименте можно определить какой путь к экрану выбрал сигнальный фотон, путём наблюдения, который из даун-конверторов испустил холостой фотон-партнёр. Так как есть возможность получить информацию о выборе пути сигнального фотона (даже хотя она является полностью косвенной, поскольку не взаимодействуем ни с одним сигнальным фотоном) — наблюдение за холостым фотоном вызывает предотвращение возникновения интерференционной картины.
Итак. Причем тут опыты с двумя щелями
Дело в том, что холостые фотоны, испускаемые даун-конверторами, могут проходить гораздо большее расстояние, чем их сигнальные фотоны-партнёры. Но какое бы расстояние не прошли холостые фотоны, картина на экране всегда будет совпадать с тем, будут ли холостые фотоны зафиксированы или нет.
Допустим, что расстояние холостого фотона до наблюдателя во много раз превышает, чем расстояние сигнального фотона до экрана. Получается, что картина на экране будет заранее отображать тот факт, будут ли наблюдать за холостым фотоном-партнёром или нет. Если даже решение о наблюдение за холостым фотоном принимает генератор случайных событий.
Расстояние, которое может пройти холостой фотон, никак не влияет на результат, который отображается на экране. Если загнать такой фотон в ловушку и, например, заставить многократно крутиться по кольцу, то можно растянуть данный эксперимент на произвольно долгое время. Не зависимо от продолжительности эксперимента мы будем иметь достоверно установленный факт того, что должно случиться в будущем. Например, если решение о том, будем ли мы «ловить» холостой фотон зависит от подбрасывания монеты, то уже в начале эксперимента мы будем знать, «каким образом упадет монетка». Когда на экране появиться картинка, это будет уже свершившийся факт еще до подбрасывания монеты.
Возникает интересная особенность, которая кажется меняет причинно-следственную связь. Мы можем спросить – каким образом следствие (которое произошло в прошлом) может формировать причину (которое должно произойти в будущем)? А если причина еще не наступала, то каким образом мы можем наблюдать следствие? Чтобы это понять попробуем углубиться в специальную теорию относительности Эйнштейна и разобраться с тем, что происходит на самом деле. Но в этом случае нам придется рассматривать фотон как частицу, чтобы не смешивать квантовую неопределенность с теорией относительности.
Почему именно фотон
Это именно та частица, которая идеально подходит для данного эксперимента. Конечно, квантовой неопределенностью обладают и другие частицы, такие как электроны и даже атомы. Но именно фотон имеет предельную скорость движения в пространстве и для него не существует само понятие времени, поэтому оно может беспрепятственно пересекать временное измерение, связывая прошлое с будущем.
Картина времени
Чтобы представить время, необходимо рассмотреть пространство-время в виде непрерывного блока растянутого во времени. Срезы, формирующие блок, являются моментами настоящего времени для наблюдателя. Каждый срез представляет пространство в один момент времени с его точки зрения. Этот момент включает в себя все точки пространства и все события во вселенной, которые представляются для наблюдателя как происходящее одновременно. Объединяя эти срезы настоящего, расположив одну за другим в том порядке, в котором наблюдатель переживает эти временные слои, мы получим область пространства-времени.

Но в зависимости от скорости движения, срезы настоящего будут делить пространство-время под разными углами. Чем больше скорость движения относительно других объектов, тем больше получается угол среза. Это означает, настоящее время движущегося объекта не совпадает с настоящим временем других объектов, относительно которых оно движется.

По направлению движению, срез настоящего времени объекта смещается в будущее относительно неподвижных объектов. В обратном направлении движения, срез настоящего времени объекта смещается в прошлое относительно неподвижных объектов. Это происходит потому, как свет, летящий на встречу движущегося объекта достигает его раньше, чем свет, догоняющей движущийся объект с противоположный стороны. Максимальная скорость движения в пространстве обеспечивает максимальный угол смещения текущего момента времени. Для скорости света этот угол составляет 45°.

Замедление времени
Как я уже писал, для частицы света (фотона) не существует понятие времени. Попробуем рассмотреть причину этого явления. Согласно специальной теории относительности Эйнштейна по мере увеличения скорости объекта происходит замедление времени. Это связано с тем, что по мере увеличения скорости движущегося объекта для света требуется преодолевать все большее расстояние за единицу времени. Например, при движении автомобиля, свету его фар необходимо преодолевать большее расстояние за единицу времени, чем если бы автомобиль стоял на парковке. Но скорость света является предельной величиной и не может увеличиваться. Поэтому складывание скорости света со скоростью движения автомобиля не приводит к увеличению скорости света, а приводит к замедлению времени, согласно формуле:где r – длительность времени, v – относительная скорость движения объекта.
Для наглядности рассмотрим еще один пример. Возьмем два зеркала и расположим их противоположно одну над другой. Допустим, что луч света будет многократно отражаться между этими двумя зеркалами. Движение луча света будет происходить по вертикальной оси, при каждом отражении отмеряя время как метроном. Теперь начнем двигать наши зеркала по горизонтальной оси. С увеличением скорости движения, траектория движения света будет наклоняться по диагонали, описывая зигзагообразное движение.
Чем больше скорость движения по горизонтали, тем сильнее будет наклонена траектория движения луча. При достижении скорости света рассматриваемая траектория движения будет выпрямлена в одну линию, как если бы мы растянули пружину. То есть свет уже перестанет отражаться между двумя зеркалами и будет двигаться параллельно горизонтальной оси. А значит наш «метроном» перестанет отмерять ход времени.
Поэтому для света не существует измерения времени. Фотон не имеет ни прошлого, ни будущего. Для него есть только текущий момент, в котором оно существует.
Сжатие пространства
Теперь попробуем разобраться с тем, что происходит с пространством на скорости света, в котором пребывают фотоны.
Для примера возьмем некий объект длиной в 1 метр и будем ускорять его до около световой скорости. По мере увеличения скорости объекта мы будем наблюдать релятивистское сокращение длины движущегося объекта, согласно формуле:
где l – это длина, а v – относительная скорость движения объекта.Под словом «мы будем наблюдать» я имею ввиду неподвижного наблюдателя со стороны. Хотя с точки зрения движущегося объекта, неподвижные наблюдатели так же будут сокращаться в длине, ибо наблюдатели будут с той же скоростью двигаться в противоположном направлении относительно самого объекта. Отметим, что длина объекта является измеряемой величиной, а пространство является точкой отсчета для измерения этой величины. Мы также знаем, что длина объекта имеет фиксированную величину в 1 метр и не может меняться относительно пространства, в котором оно измерено. Значит, наблюдаемое релятивистское сокращение длины говорит о том, что сокращается пространство.
Что произойдет, если объект постепенно ускориться до скорости света? На самом деле ни одна материя не может ускоряться до скорости света. Можно максимально приближаться к этой скорости, но достичь скорости света не возможно. Поэтому с точки зрения наблюдателя, длина движущегося объект будет бесконечно сокращаться, пока не достигнет минимально возможной длины. А с точки зрения движущегося объекта, все относительно неподвижные объекты в пространстве будут бесконечно сжиматься, пока не сократятся до минимально возможной длины. Согласно специальной теории относительности Эйнштейна мы также знаем одну интересную особенность — не зависимо от скорости движения самого объекта, скорость света всегда остается неизменной предельной величиной. Значит, для частицы света всё наше пространство сжато до размеров самого фотона. Причем сжаты все объекты, не зависимо от того двигаются они в пространстве или остаются неподвижными.
Тут можно заметить, что формула релятивистского сокращения длины недвусмысленно дает нам понять, что при скорости света всё пространство будет сжато до нулевого размера. Я же писал о том, что пространство будет сжато размеров самого фотона. Полагаю, оба вывода являются правильными. С точки зрения Стандартной модели фотон является калибровочным бозоном, выполняющую роль переносчика фундаментальных взаимодействий природы, для описания которого требуется калибровочная инвариантность. С точки зрения М-теории, которая на сегодняшний день претендует на звание Единой теории всего, считается, что фотон представляет из себя колебание одномерной струны со свободными концами, которая не имеет размерности в пространстве и может содержать в себе свернутые измерения. Я честно не знаю по каким расчетам сторонники теории суперструн пришли к подобным выводам. Но то, что наши расчеты ведут нас к тем же результатам думаю говорит о том, что мы смотрим в правильном направлении. Расчеты теории суперструн перепроверялись десятилетиями.
Итак. К чему же мы пришли:
- С точки зрения наблюдателя, всё пространство фотона свернуто до размеров самого фотона в каждой точке траектории движения.
- С точки зрения фотона, траектория движения в пространстве свернуто до размеров самого фотона в каждой точке пространства фотона.
Рассмотрим какие выводы следуют из всего что мы узнали:
- Линия текущего времени фотона пересекает линию нашего времени под углом 45°, в следствии которого наше измерение времени для фотона является нелокальным пространственным измерением. Это значит, что если бы мы могли перемещаться в пространстве фотона, то мы бы перемещались от прошлого к будущему или от будущего к прошлому, но эта история была бы составлена из разных точек нашего пространства.
- Пространство наблюдателя и пространство фотона непосредственно не взаимодействуют, их связывает движение фотона. При отсутствии движения отсутствуют угловые расхождения в линии текущего времени, и оба пространства сливаются в одну.
- Фотон существует в одномерном пространственном измерении, в следствии которого движение фотона наблюдается только в пространственно-временном измерении наблюдателя.
- В одномерном пространстве фотона не существует движения, в следствии чего фотон заполняет свое пространство от начальной до конечной точки, в пересечении с нашим простраством дающее начальные и конечные координаты фотона. Данное определение говорит, что в своём пространстве фотон выглядит как вытянутая струна.
- Каждая точка пространства фотона содержит проекцию самого фотона во времени и в пространстве. Имеется ввиду, что фотон существует в каждой точке этой струны, представляя разные проекции фотона во времени и в пространстве.
- В каждой точке пространства фотона сжата полная траектория его движения в нашем пространстве.
- В каждой точке пространства наблюдателя (где может пребывать фотон) сжата полная история и траектория самого фотона. Данный вывод следует из первого и пятого пункта.
Пространство фотона
Давайте попробуем разобраться что из себя представляет пространство фотона. Признаюсь, трудно представить что такое пространство фотона. Разум сцепляется за привычное и пытается провести аналогию с нашим миром. А это приводит к ошибочным выводам. Чтобы представить другое измерение нужно отбросить привычные представления и начать думать по другому.
Итак. Представьте себе лупу, собирающее в фокусе всю картину нашего пространства. Допустим, что мы взяли длинную ленту и расположили фокус лупы на этой ленте. Это есть одна точка в пространстве фотона. Теперь немного передвинем лупу параллельно нашей ленте. Точка фокуса также передвинется по ленте. Это уже другая точка в пространстве фотона. Но чем отличаются эти две точки? В каждой точке есть панорама всего пространства, но проекция выполнена из другой точки нашего пространства. К тому же, пока мы передвигали лупу успело пройти какое то время. Получается, что пространство фотона в чем то похоже на кинопленку, снятую с движущегося автомобиля. Но есть некоторые отличия. Пространство фотона имеет только длину и не имеет ширину, поэтому там фиксируется только одно измерение нашего пространства — от начальной до конечной траектории фотона. Так как в каждой точке записана проекция нашего пространства, то в каждой из них имеется наблюдатель! Да да, ведь в каждой точке фиксируются одновременные события с точки зрения самого фотона. И раз уж начальные и конечные траектории фотона расположены в одной линии времени — это одновременные события для фотона, которые затрагивают его в разных точках своего пространства. В этом основное отличие от аналогии с кинопленкой. В каждой точке пространства фотона получается одинаковая картина из разных точек обзора, и отражающая разные моменты времени.
Что происходит, когда фотон движется? Пробегает волна по всей цепочки пространства фотона, когда пересекается с нашим пространством. Волна затухает когда сталкивается с препятствием и передает ему свою энергию. Возможно пересечение пространства фотона с нашим пространством создает момент импульса элементарной частицы, называемое также спином частицы.
А теперь посмотрим как выглядит фотон в нашем мире. С точки зрения наблюдателя пространство фотона свернуто в размеры самого фотона. По сути это самое свернутое пространство и является самим фотоном, отдаленно напоминающую струну. Струна построенная из симметричных проекций самого себя из разных точек пространства и времени. Соответственно фотон содержит в себе всю информацию о самом себе. В любой точке нашего пространства он “знает” весь путь, и все события прошлого и будущего, касающегося самого фотона. Я считаю, что фотон безусловно может предсказывать свое будущее, нужно только поставить правильный эксперимент.
Выводы
1. Остается масса вопросов, ответы на которых трудно получить без проведения экспериментов. Не смотря на то, что подобные эксперименты с двумя щелями проводились много раз, и с различными модификациями, в интернете очень трудно найти об этом информацию. Даже если удается что-то найти, нигде не приводятся вразумительных объяснений сути происходящего и анализа результатов эксперимента. Большинство описаний не содержит никаких выводов и сводится к тому что, «есть такой парадокс и никто не может его объяснить» или «если вам кажется что вы что то поняли, значит вы ничего не поняли» и т. д. А между тем я считаю, что это перспективное направление исследования.
2. Какую информацию можно передавать из будущего в настоящее? Очевидно, что мы можем передать два возможных значения, когда мы будем или не будем наблюдать за холостыми фотонами. Соответственно, в текущем времени мы будем наблюдать волновую интерференцию или скопление частиц из двух полос. Имея два возможных значение можно использовать бинарное кодирование информации и передавать любую информацию из будущего. Для этого потребуется должным образом автоматизировать этот процесс, с использованием большого количества квантовых ячеек памяти. В этом случае мы сможем получать тексты, фотографии, аудио и видео всего, что нас ожидает в будущем. Также можно будет получать передовые разработки в области программных продуктов и возможно даже телепортировать человека, если заранее отправят инструкцию, как построить телепорт.
3. Можно заметить, что достоверность получаемой информации относиться только к самим фотонам. Из будущего может быть отправлена заведомо ложная информация, ведущая нас в заблуждение. Например, если подбросили монетку, и упала решка, но мы отправили информацию, что упал орел, то мы сами вводим себя в заблуждение. Достоверно можно утверждать только то, что отправленная и полученная информация не противоречат друг другу. Но если мы решим ввести себя в заблуждение, то думаю, со временем сможем узнать, почему мы решили так поступить.
Кроме этого, мы не можем точно определить из какого времени получена информация. Например, если мы хотим узнать что произойдет через 10 лет, то нет гарантии того, что мы отправили ответ гораздо раньше. Т.е. можно сфальсифицировать время отправки данных. Думаю для решения этой проблемы может помощь криптографию с открытыми и закрытыми ключами. Для этого потребуется независимый сервер, занимающийся шифрованием и расшифрованием данных, и хранящий в себе пары открытых-закрытых ключей, сформированных на каждый день. Сервер может по запросу шифровать и расшифровать наши данные. Но пока у нас не будет доступа к ключам, мы не сможем сфальсифицировать время отправки и получения данных.
4. Рассматривать результаты экспериментов только с точки зрения теории относительно было бы не совсем правильным. Хотя бы в силу того, что СТО имеет сильную предопределенность будущего. Не приятно думать, что всё предопределено судьбой, хочется верить, что у каждого из нас есть выбор. А если есть выбор, значит должны быть альтернативные ветки реальности. Но что будет, если мы решим действовать по другому, вопреки тому, что отображается на экране? Возникнет новая петля, где мы тоже решим действовать по другому, и это приведет к возникновению бесконечного количества новых петель с противоположными решениям? Но если есть бесконечное количество петель, то мы изначально должны были видеть на экране смесь интерференций и двух полос. А значит, мы изначально не могли бы определиться с противоположным выбором, что снова приводит нас к парадоксу… Я склоняюсь к мысли, что если существуют альтернативные реальности, то на экране будет отображаться только один вариант из двух возможных, не зависимо от того, сделаем мы такой выбор или нет. Если мы сделаем другой выбор, мы создадим новую ветку, где изначально на экране будет показан уже другой вариант из двух возможных. Возможность сделать другой выбор будет означать о существовании альтернативной реальности.
5. Существует вероятность того, что как только экспериментальная установка будет включена, будущее окажется предопределенным. Возникает такой парадокс, что установка сама предопределяет будущее. Сможем ли мы разорвать это кольцо предопределенность, ведь у каждого есть свобода выбора? Или же наша «свобода выбора» будет подчинена хитрым алгоритмам предопределенности, и все наши попытки что то изменить, в конце концов сложатся в цепь событий, которые приведут нас к данной предопределенности? Например, если мы знаем номер выигрышной лотереи, то у нас есть шанс найти этот билет и получить выигрыш. Но если мы также знаем имя победителя, то мы уже не сможем ничего изменить. Может даже кто то другой должен был выиграть лотерею, но мы определили имя победителя и создали цепь событий, которая привела к тому, что предсказанный человек выиграет эту лотерею. Трудно ответить на эти вопросы без проведения экспериментальных опытов. Но если такое имеет место, то единственная возможность избежать предопределенности видеться в том, чтобы не пользоваться этой установкой и не заглядывать в будущее.
Записывая эти выводы, мне вспоминаются события фильма «Час расплаты». Поражает то, насколько точно совпадают детали фильма с нашими расчетами и выводами. Ведь мы не стремились получит именно такие результаты, а просто хотели разобраться с происходящим и следовали формулам теории относительности Эйнштейна. И всё же, если есть такой уровень совпадения, то видимо, мы не одиноки в своих расчетах. Возможно, подобные выводы уже были сделаны десятки лет назад…
Сделайте резервную копию своего Mac с Time Machine
Узнайте, как создать резервную копию файлов на вашем Mac.
Вы можете использовать Time Machine, встроенную функцию резервного копирования вашего Mac, для автоматического резервного копирования всех ваших файлов, включая приложения, музыку, фотографии, электронную почту, документы и системные файлы.Если у вас есть резервная копия, вы можете восстановить файлы из резервной копии, если исходные файлы когда-либо удалялись с вашего Mac, или жесткий диск (или SSD) на вашем Mac был удален или заменен.
Создание резервной копии Time Machine
Для создания резервных копий с помощью Time Machine все, что вам нужно, - это внешнее устройство хранения. После подключения устройства и выбора его в качестве резервного диска Time Machine автоматически делает ежечасные резервные копии за последние 24 часа, ежедневные резервные копии за последний месяц и еженедельные резервные копии за все предыдущие месяцы.Самые старые резервные копии удаляются, когда ваш резервный диск заполнен.
Подключите внешнее запоминающее устройство
Подключите одно из следующих внешних устройств хранения данных, которые продаются отдельно. Узнайте больше о резервных дисках, которые вы можете использовать с Time Machine.
- Внешний накопитель, подключенный к вашему Mac, например USB, Thunderbolt или FireWire,
- Внешний диск, подключенный к базовой станции AirPort Extreme (802.Модель 11ac) или AirPort Time Capsule
- AirPort Time Capsule
- Mac совместно используется в качестве места назначения для резервного копирования Time Machine
- Устройство сетевого хранилища (NAS), которое поддерживает Time Machine через SMB
Выберите устройство хранения в качестве резервного диска
Когда вы подключаете внешний диск напрямую к вашему Mac, вас могут спросить, хотите ли вы использовать диск для резервного копирования с помощью Time Machine.Выберите Encrypt Backup Disk (рекомендуется), затем нажмите Use as Backup Disk.
Зашифрованная резервная копия доступна только пользователям с паролем. Узнайте больше о сохранности вашего резервного диска.
Если Time Machine не просит использовать ваш диск, выполните следующие действия, чтобы добавить его вручную:
- Откройте настройки Time Machine из меню Time Machine в строке меню. Или выберите меню «Apple» ()> «Системные настройки», затем нажмите «Time Machine».
- Нажмите Выбрать резервный диск (или Выбрать диск, или Добавить или удалить резервный диск):
- Выберите внешний диск из списка доступных дисков.Затем выберите «Зашифровать резервные копии» (рекомендуется) и нажмите «Использовать диск»:
Если выбранный диск не отформатирован в соответствии с требованиями Time Machine, вам будет предложено сначала стереть диск. Нажмите Erase, чтобы продолжить. Это стирает всю информацию на резервном диске.
Наслаждайтесь удобством автоматического резервного копирования
После того, как вы выбрали диск для резервного копирования, Time Machine немедленно начнет делать периодические резервные копии - автоматически и без каких-либо дополнительных действий с вашей стороны.Первое резервное копирование может занять много времени, в зависимости от того, сколько у вас файлов, но вы можете продолжать использовать свой Mac, пока выполняется резервное копирование. Time Machine выполняет резервное копирование только тех файлов, которые изменились с момента предыдущего резервного копирования, поэтому последующие резервные копии будут выполняться быстрее.
Чтобы запустить резервное копирование вручную, выберите «Создать резервную копию сейчас» в меню Time Machine в строке меню. Используйте это же меню, чтобы проверить состояние резервной копии или пропустить текущую резервную копию.
Узнать больше
- Восстановите ваш Mac из резервной копии
- Другие способы резервного копирования и восстановления файлов
- Если вы выполняете резервное копирование на несколько дисков, вы можете переключать диски перед входом в Time Machine.Нажмите и удерживайте клавишу параметров, затем выберите «Обзор других резервных дисков» в меню Time Machine.
- Чтобы исключить элементы из резервной копии, откройте настройки Time Machine, нажмите «Параметры», затем нажмите кнопку «Добавить (+)», чтобы добавить элемент, который необходимо исключить. Чтобы прекратить исключать элемент, например внешний жесткий диск, выберите элемент и нажмите кнопку «Удалить» (-).
- Если вы используете Time Machine для резервного копирования на сетевой диск, вы можете проверить эти резервные копии, чтобы убедиться, что они в хорошем состоянии. Нажмите и удерживайте Option, затем выберите «Проверка резервных копий» в меню Time Machine.
- В OS X Lion v10.7.3 или новее вы можете при необходимости запустить с диска Time Machine. Нажмите и удерживайте Option, когда ваш Mac загрузится. Когда вы увидите экран Startup Manager, выберите «EFI Boot» в качестве загрузочного диска.
Информация о продуктах, не произведенных Apple, или независимых веб-сайтах, не контролируемых или не протестированных Apple, предоставляется без рекомендации или одобрения.Apple не несет никакой ответственности в отношении выбора, производительности или использования сторонних веб-сайтов или продуктов. Apple не делает никаких заявлений относительно точности или надежности сторонних веб-сайтов. Свяжитесь с продавцом для получения дополнительной информации.
Дата публикации:
,Резервное копирование Time Machine может занять больше времени, если много файлов изменилось или ваша предыдущая резервная копия была прервана.
Вы можете использовать меню Time Machine, чтобы проверить ход выполнения резервного копирования.Когда Time Machine выполняет резервное копирование ваших данных, появляется индикатор «Резервное копирование» с шагом
Если вы видите предупреждающее сообщение в меню Time Machine или не можете выполнить резервное копирование вообще, см. Раздел «Если вы не можете создать резервную копию или восстановить Mac с помощью Time Machine».
Если ваша резервная копия Time Machine работает, но занимает больше времени, чем вы ожидаете, проверьте следующее:
Ваша первая резервная копия
При первом резервном копировании Mac с помощью Time Machine на его выполнение может потребоваться много времени.Это связано с тем, что Time Machine копирует большинство или все данные на вашем Mac в вашу первую резервную копию. Вы можете продолжать использовать Mac, пока Time Machine работает в фоновом режиме, для резервного копирования ваших данных.
После завершения первого резервного копирования Time Machine работает в фоновом режиме для резервного копирования только тех файлов, которые изменились с момента последнего резервного копирования. Это означает, что ваша следующая резервная копия обычно быстрее.
Если вы хотите приостановить резервное копирование и завершить его позже, выберите Пропустить это резервное копирование в меню Time Machine.Time Machine автоматически попытается выполнить резервное копирование позже. Если вы хотите запустить резервное копирование вручную, выберите «Резервное копирование сейчас» в меню.
Резервное копирование больших изменений
Некоторые резервные копии могут занять больше времени, чем другие, если вы внесли изменения в большое количество файлов или в большие файлы с момента последнего резервного копирования. Когда это произойдет, вы можете увидеть «Подготовка» в меню Time Machine в течение более длительного периода времени.Например:
- Если ваш резервный диск недоступен (например, когда вы путешествуете, или ваш резервный диск отключен или выключен) Time Machine не может выполнить резервное копирование ваших файлов. Если вы используете свой Mac в течение нескольких дней без доступа к резервному диску, это может занять больше времени, когда в следующий раз диск будет доступен.
- Если вы используете на своем компьютере программное обеспечение для виртуализации, такое как Parallels или VMWare, это программное обеспечение может создать большой образ диска или другой файл для хранения данных, связанных с другими операционными системами.Time Machine может попытаться создать резервную копию всего образа диска, даже если вы изменили только несколько файлов на нем. Для достижения наилучших результатов убедитесь, что ваше программное обеспечение обновлено, а затем посетите сайт поддержки разработчика для получения информации об использовании Time Machine с этими приложениями. Если вы хотите, чтобы Time Machine пропускала эти файлы, вы также можете указать Time Machine исключить их из вашей резервной копии.
- Если вы недавно установили новое программное обеспечение или обновили macOS, выполнение следующего резервного копирования может занять больше времени. После того, как Time Machine завершит резервное копирование вашего нового программного обеспечения, резервное копирование должно быть быстрее.
- Если вы отменили или неожиданно прервали предыдущее резервное копирование, Time Machine может занять больше времени при следующем резервном копировании ваших файлов. Это также может произойти, если вы неправильно выключили Mac или не извлекли диск перед его отключением.
Скорость сети
Если вы выполняете резервное копирование по сети Wi-Fi, убедитесь, что ваша точка доступа Wi-Fi или маршрутизатор находятся поблизости.Подключение к сети Wi-Fi может замедляться, если ваш Mac находится слишком далеко от маршрутизатора. Вы можете получить представление о силе сигнала беспроводной сети, посмотрев в меню Wi-Fi. При необходимости проверьте наличие проблем с Wi-Fi.
Антивирусное программное обеспечение
Если вы используете антивирусное программное обеспечение на своем Mac, убедитесь, что оно обновлено.Если это создает помехи для резервного копирования компьютера, вы можете исключить резервный диск из проверки на вирусы. Проверьте документацию, поставляемую с вашей антивирусной утилитой, или обратитесь к производителю утилиты для получения дополнительной информации.
Проверьте свои диски
Резервное копирование может быть медленнее, если возникла проблема с одним из дисков, для которых выполняется резервное копирование, или с диском, на котором хранится резервная копия.
Если вы используете AirPort Time Capsule, вы можете проверить его встроенный дисковод:
- Отключите AirPort Time Capsule от источника переменного тока.
- Подождите десять секунд, затем снова подключите AirPort Time Capsule к источнику питания.
Когда встроенный накопитель Time Capsule работает, индикатор Time Capsule становится зеленым. Если есть проблема, свет мигает желтым. Откройте AirPort-Утилиту и подключитесь к Time Capsule, чтобы узнать больше об этой проблеме.Если вы не можете решить проблему, вам может потребоваться стереть диск с помощью AirPort-Утилиты, после создания дополнительной резервной копии с помощью Time Machine и другого диска. Если вы не можете стереть диск, возможно, ваш Time Capsule нуждается в обслуживании.
Для других дисков откройте настройки Time Machine и выключите Time Machine, затем с помощью Дисковой утилиты проверьте загрузочный диск, внешние резервные диски и любые другие диски, для которых вы создаете резервную копию. Вы можете снова включить Time Machine после того, как ваши диски будут успешно проверены или отремонтированы.
Информация о продуктах, не произведенных Apple, или независимых веб-сайтах, не контролируемых или не протестированных Apple, предоставляется без рекомендации или одобрения. Apple не несет никакой ответственности в отношении выбора, производительности или использования сторонних веб-сайтов или продуктов. Apple не делает никаких заявлений относительно точности или надежности сторонних веб-сайтов.Свяжитесь с продавцом для получения дополнительной информации.
Дата публикации:
,Проверьте эти вещи, если вы видите предупреждение о том, что Time Machine не может выполнить резервное копирование ваших данных, или если вы не можете выбрать свой резервный диск в настройках Time Machine.
Системные требования Time Machine
Перед использованием Time Machine необходимо решение для внешнего хранилища, которое продается отдельно:
- Внешний жесткий диск, подключенный к порту USB, FireWire или Thunderbolt на вашем Mac
- Time Capsule или MacOS Server в вашей сети
- Внешний жесткий диск, подключенный к порту USB базовой станции AirPort Extreme (802.11ac) в вашей сети
Если ваш резервный диск не подключен одним из этих способов, Time Machine может не работать. Уточните у производителя устройства совместимость и информацию о подключении.
Если ваша установка соответствует этим требованиям, но вы все еще не можете использовать Time Machine, проверьте следующее:
Проверьте свою базовую станцию AirPort
- Если вы используете AirPort Time Capsule или диск, подключенный к базовой станции AirPort Extreme, убедитесь, что ваша прошивка AirPort обновлена.
- Перезагрузите базовую станцию и посмотрите, не исчезла ли проблема. Для перезапуска отсоедините базовую станцию от сети переменного тока на 5 секунд, затем снова подключите ее.
Проверьте подключение к сети
Если вы выполняете резервное копирование на сервер, AirPort Time Capsule или диск, подключенный к базовой станции AirPort Extreme, убедитесь, что ваш Mac подключен к той же сети, что и резервный диск.Вы можете выбрать свою беспроводную сеть в меню состояния Wi-Fi.
Проверьте свою резервную копию
Если вы выполняете резервное копирование на сервер, AirPort Time Capsule или диск, подключенный к базовой станции AirPort Extreme, убедитесь, что в текущей резервной копии Time Machine нет проблем, которые могут помешать дальнейшему резервному копированию:
- Удерживая нажатой клавишу «Option» на клавиатуре, откройте меню «Time Machine» в строке меню и выберите «Проверка резервных копий».
- Если Time Machine обнаружит проблему с резервной копией, отобразится сообщение с подробной информацией. Следуйте инструкциям на экране.
Проверьте свои диски
- Если вы используете диск, подключенный к порту вашего Mac или базовой станции AirPort Extreme, убедитесь, что диск включен.
- Если вы используете USB-концентратор или подобное устройство, попробуйте подключить диск напрямую к вашему Mac или базовой станции.
- Если вы выполняете резервное копирование на внешний сторонний накопитель, обратитесь к производителю накопителя, чтобы убедиться в актуальности встроенного ПО накопителя.
- Если вы выполняете резервное копирование на внешний диск, проверьте форматирование диска. Time Machine требует, чтобы внешний диск был отформатирован как загрузочный диск Mac: Mac OS Extended (в журнале) с таблицей разделов GUID (GPT). Если вы выберете другой форматированный диск для использования с Time Machine, ваш Mac автоматически предложит вам стереть его для Time Machine.
Переформатирование диска стирает все данные, хранящиеся на диске, поэтому вы можете сначала переместить важные файлы на другой диск.
Если ваш диск уже отформатирован правильно, выключите Time Machine, а затем проверьте его на наличие проблем:
- Чтобы проверить привод AirPort Time Capsule, выполните следующие действия, чтобы проверить привод AirPort Time Capsule.
- Чтобы проверить внешний диск, подключенный к вашему Mac, откройте Дисковую утилиту из папки «Утилиты» в папке «Приложения».Затем используйте функцию «Первая помощь» в Дисковой утилите для проверки вашего диска. Сделайте это и для своего загрузочного диска.
Вы можете снова включить Time Machine после успешной проверки или ремонта дисков.
Информация о продуктах, не произведенных Apple, или независимых веб-сайтах, не контролируемых или не протестированных Apple, предоставляется без рекомендации или одобрения.Apple не несет никакой ответственности в отношении выбора, производительности или использования сторонних веб-сайтов или продуктов. Apple не делает никаких заявлений относительно точности или надежности сторонних веб-сайтов. Свяжитесь с продавцом для получения дополнительной информации.
Дата публикации:
,